Biasing a query

Ok, I setup a speed test with a “real world” amount of data (10k points, 300 columns) and I get around 29-32ms per dump of the process.

This is, perhaps, not the way to go about doing what I want to do, but given the current tools I don’t know how else to go about doing something like this. (as in, I don’t want or need a new dataset, I just want to filter through the dataset as part of the query itself)


----------begin_max5_patcher----------
2129.3oc2as0jiiZE9Y2+Jnbk7RhWUbQWyCo176XpsbgrvtYWYIEITO8Las6
u8.HjLxMxVtaod1J9AeADbNmON2.N92eZy1zxWYMaA+KvW.a176OsYitIUCa
L+dy1yzWOjSazO11B1WKS+0s655RvdUnaV.RAo8sV1JxYBw2pXcy71TZwos6
LeB9EyiwyzCUNc+TX+PKZOyKjCVSLzkF6lRcqXSqUTwgm4Em1WyNH5HjOIzC
tCDm34CseEtCfgwdnj.DjfBi8iiB7SjMh8ffeQMc+wSOoda2GCE9dN3TcYaE
3m+dt74a3emAPPr+j.iBTbBH9DmHB9QQDLLwKPJnnPuPaDAS1AP9IJzZoAg1
uyADHbdJCxO4EB2P.7Af.xzP.JwWAAnHeOrMDfh1A7i9PHvw7RIabyU2IU4I
CZEUzZ5YlfUumUPSy0iFdK6gik0moZoK7Q0GBwZKD+HnWh0q3XoIBBA+PnQZ
qPTVb60cWHAF+tQhwxM5FxcDVIaj3PoW.qWDrTf80hs+msXCWew13PzOnWB+
.x4Dl6UfCUsB9YV8jPfzLgZYierrPTHEX8v+O0bZ912hNH+Gv5GYMyJmt51T
K320N.G6EXqO.kQEBCtXFXOCRIrCcLvijd7b1Kr5Ftb8+BarYKspxp4MVCQg
o+Zodhh2MzDunqIzPS0rW38iOXnUZsTNDRgnstC8dMrGlTSSYFqtnkqmotFk
qtFVRuNpP8lJ5gtAqVt669BxDf0hOJVavfR57PRhtfFREkS4kG9MVlkhpbYu
hUvKppYMrBAUXX9gtyXGos4h8iViPRzO.EGNf+td5iFF14T4TQZy1S07rxBE
KMZgQ0bOwkQF5jz.aQS+DEzJGCVpVJQoI5rQJxsMozZ05lwFF22onrLebWCi
KmcTX5thWTbElJJqltyZ9omuwXSKkcd9Vystml8sEc8tWphH12PeYLZKn44F
a+wS+qzBtLNDSY7qEW3Pmc9wdt4PcYd9H4sqmWbzSlTk+.6q7LwyZB4YsdKe
bdUuJ01gU4L9IViXbaB5olwszH9VGna0TapwjdufctJWJEie.owBuQz7b4Wa
LOXuhlM.bI0YaSbaGoiZ+JGpcNvFreux+mc6tBB3vMHzpGG97HZ++nHh1hNn
+8AcesahxymYEcPpLwLV8Kzb.u.btAva.0rpxZAKCHwC1HFuHi8pkeGSvEiK
n2I9LJfy3fNofQ3ysC5d6fNuIr76.3QWQn65eapTUgZusQw50lNOuv9v0qOp
JCjeP4X+lP63f4OF1R9wisHn1JHH7yFb+IoGsUCX8mDXwqNvZbq3qcqPv5sa
9Ihqqnqffefpq9w+esmfvejPaj97.VUGAZ44A0KsfmnIgG3rfmo8+YNwi6G8
WwefFYBnM.YBdx4BPKxLY.HSFvjafyj.v+0AHiWdfryx7QwQpB0L.4MAOWYP
cY6I47hoR5Typp9cipMks0G5wLCz.Fy1x7rE7hgst8kAuff4Zb7n7PzL4A7J
xCgyjGjwXAnUhGBlIODth3f+L4AzJxCjGXsXs3A7L4Axj7fow9CeYqZK0Y66
N9f8Tgnlm1J5LisOMoGZaty6XTNkWlRyuZGrt1q7SWDgk4XAaX4.QMsnQcX0
28t.be.oKzcfDf6tmi.8Gwv03RONl2xy7xnBZCS7mfF94pbVPSaZyPzqok9t
DolBFPwOvkiQtKLPjIpGYejmApjgBweHT4Lqogdh8FXIq8b0zWOhSoM4cbtu
2PZgHOhszFot0GzOj64fj7Ybf+q848K.bPJfOo3qtNuYb6d3ERqF4qSfGQPd
witcOj5BsBWEs5C4LZ8ioVGgVH05.0dWbdMVjnUQXUmmuXG3HOWpuJC38uAP
ODNdGflkcnLu8bA.K43KN66c9obF51QnJX7gx1tDj8eLbDtL3n4hwbq1zchF
gqYHh+aKq9a+4GLxPHZYrgLfg6hD.gWi3k47Fww1hBV9jXf5Qb65HY6h3qzT
aDNCQDDuFR8KrWqpA+siXv+Pc+FHv+T9CD3maNPyo0p6ua3vrla3xvkwdnuN
Q5xQBuNK5osGOxp6yNppTFaPJ6zyUM2rfQFLBlLxJBtL0OjIXh6piH1eMvjJ
F62FgHy8VzsDe21Cj2q8fyDDgqhAQSUsTjOphkzoN72ylEV3DFBVF2BFk.mw
XQQQqUISgTdbAKPYSsLUMUWhjtpjNDF+4sCJ0u+n6eZQSzzYEifBf+EY6SjE
JOytZlyoMvD6dRyMiOexNQ+5yew..u8bWf1G7x8O.r2fwykPgyfNQvEhPn6P
Hj+BPH0NKuqHsDDRMG36PGb7BQn6AcDzBPnHzLftEgPyR8dInjdRt6pDYAnT
vmD14SlCgVBeCphN9tJd9jkhR3OCJQ9rTwwywMTxRPn3YPnfkhP2Uc.tTTBO
GUbzGkRyxXZQVlvygR9KfLglilGZIBLgly5DFuDTZN4ofWh0Ij+LnD4s4Ozk
x2UE6rhHWUjyWUfyus3lmtvlutnl02oVWEcdUZlC2tkLy5vgRatuVgGi.zCG
XEhCk4cb0W.Pu3cp2HIXTn5aQvjXnuTwzpHvUokqGyddgRhY8iEty5M6Qjdx
hFHSul2fdA8f4NypUsjottXU2dVx8ZoGd0p6HA1pLIbKxiDVeLI.mn3ARDV+
OgB5gi7CPF1ewXqQarwMi8dP0i777AAx9JT62dz1S0zLNa3DDLxOZX0NT9JZ
myugrKGb8vv8CKJNVhb6b9s2Nr9QgSfnDsVEwnUo9lrIzUiRtcVSgiGYU8yU
0kpZtoud58HC2tKsUTNHnlkhK2hq6kuwVGyaUztPkmg1kdMyWpVAw5uIkYRx
6VypyIyD+8Ed5Od5+AHvtypD
-----------end_max5_patcher-----------