Don’t know if these are there as placeholders for now, in which case, feel free to ignore this thread.
But if I send either the inputpointbuffer
or predictionbuffer
to fluid.standardize~
I get back either a fluid.standardize~: DataSet does not exist
or a fluid.standardize~: No buffer passed
depending on whether I send a fittransform
or transformpoint
message.
The help and reference are pretty sparse on on info:
But given the name, I’m assuming that these @attributes
are for the transformpoint
message (rather than vanilla fit
and fittransform
).
This is obviously super useful.
What would also be great (which I imagine is also in the pipeline) is having inputpointdataset
and predctiondataset
or whatever the corresponding messages would be so you can use the same functionality but when doing whole fluid.dataset~
s’ worth of stuff.
----------begin_max5_patcher----------
6368.3oc2cs0aiibk94t+UPnmsUW2urOkLIal.ryjcv1cvfESFXPKQ6lSKKJ
PQ0W1fL+12yoJJJRIJohWjrcZf1lljUUmqemSUEIO+y29lI2m80j0Sh9Oh9k
n27l+4aeyabmBOwaJ+62L4o3uNaQ7Z2sMYV1SOkrrXxM9qUj70B24ESiVljV
7wj7nrGhfeuNI5KY4eZ6MtHcYxrrMKc2Mq7jqxgaaYQbQZ1x6ZbG7x63grkE
ODOKAOGs7bK27T5xEIEq26jYaJ1dVR4YSm6Htr6+saorI05y0o+et9jQlRpc
5kwO4N8j+ZxhOmTjNKdaiVEWL6ioKe7t7jYEdAlkvfFGw0b7WTl6uDpojneE
ay+5suE+wMAJXeJY853GSNPv9PZQQd7x0Ojk+zj1j.rVk.zCk.Lw116uuhus
JwyISlD8qGmOMTsiOMR7WJK9SjYGU1rhGWkkty7pmLJYPLpf6zjd1s2L5wbT
XSmLH6XA+DljRuQH0Pb+xqpHiLGPGHGvMmfCDLy3wA2uonHaYGn11LlT6n1b
.dnHI+tjkw2uHoN6cfg18wKe7jFaBqvwgZG+xDa+4npp3SAn3z0Nj30QO.Hr
mDOd7Pa47wFskRjNaaF2afPrCBt83tmQKxhmGk703mVsHIpAbzEVnwLisPSH
r9XS9eIzWDYFsTlMOtHdcRwjwWvnGeqIunfTStv5qbYYxW.p7.wxpnY.YABr
0CLbFsegyJU9LpygQI1ENqdaRxK4rRVCDloKR9bR9ZHorZTzalDuZUsS+lZM
AkG+VlqiL2Tcpzk9SQqNUdxmS21dY0YiyAJu.H6M4dE3WUayTA6lr4I4K2j5
5I+IAMSII4zAnhe8pRCMmpZ6kqEXz6.P7XtRhSjXzpcRCPI+3hrYeJYdMiPP
juJYY5x5Ip13xySdHdyhh6paWRYSa85a8EZ8hUVu+w7z3EUbvi4oyyVhDQCU
Ad5sCGXLK8bUclwcGKiW0RiAaJPtbjKtFXxMquONG0TkA4XauXQV1hlWppcK
Rdnn7xqRWtbOoXQ1piew7zG+3IZ68YvEe5T8s6JquayR+UuCLJJtac7maJsK
hWrnzSsY2+03koOEW.PFOUhqTcQef9OtdVd1hEM3W+U9bKWYNXjOK4KoyK9n
afpaL.2d5psFQSpzxySeLYcQyyUD+35lmYcw27B8ZmZy8kNw2Uj.wq.tn4M.
tGoqKV+wrurt7F2ZnUW.raJf0cpqC60376A+4fzpbX2Gliz7BGB0c.bW8t5z
4UcTjOtCPW5lXFmr8mMZ11fY0EWNJY47DGWy1dNWzfRbmdJhZNqmlgItkRlJ
ULqh6bgsJEmEcKLGDM0njxH0TilPEpH9Tglx3Q5obAgxMQ2plpTZE0fMzH8M
jpfdCP5lxjJt.NAjPs0HYbIXJB8ghwoRQDLRZN2HfFLkqsDkF6Dsfagyomxr
DMLThobqhBWCZJ.qYrF3j2Rlp0DlhA8Fj9JzhnagVv4TpDOEUorJXbmRjBjd
oP6jb7TxoRggXXX2QlJfAkRgKKzFlUfs.9E2xbsvHMTj3LbpkxhXSUbMUP8c
hPqLvorBM2vgtRY4ffCZm0JHBM1UkWCDibjb3S0LFQxQonfvIbGKQ.dWnYHK
IEVsvBbLvHRKJH2dQAHPItwCzBRFd.HFrJT1Bbqw.DpZJnO.YtRXTv04vTIo
V75RlkKYf3FFUoRhijfQ.UKRHJTvgRPl.FEqTvoXu.2HvEvMX0DXV2Q2JPaA
fpipta5TImxYH6vIJFSg2j.HCAHfENcjPaAI.NLTlhpQAmVyDVJbJvvxvcRb
IDKzZw6xHXfh9VCnxQAo.3TK1OLfpTXi.coFt1s7oLCGUXfklTRQiCv7BT..
iSHZkVhcrQHID2XgpaFbiVuofVKoNIGJK0nIFA9MdSVlDT6d4LnzvQhB8h.u
IrcnIOHczTBEEx.qvPaDP0R4f7FFKIbIzlGDODpUfVDJFXNRQwC7GPCXTA1K
foDgoQUkfiG.WGz+v4PKMAEzEnEpQaA8McJ3jQLX2JrLKXkC2LJ8QWJvIUAc
IHIAwLJ4qtFn+LNN6VzRxRcFnnY.pRAGQIX9iZRpfyEkDEz6twCXCoi0HLIp
cAYNvsTm.vn.ME1PC3+B1kvHpPpE7ILFW+P.NfiBRIGTGVT0KH30PgMG7.Qg
sh.1JHEAZFW+JkZv.w4oHsblyPD7ywQhKzBTg.iIZtiBIvamy7iljgFH.gAJ
AgDuKD4gicNCrzrR+cYIDoquDJG7.ELbcdUbfa0NojQwPvKvgyPzNMqUacmA
wkPRhREViSDIY.JH1OZqQ6LHXRAi0H7QyIrooGKHEqqAonmLH0YCPIotPSLs
KeToK+MNnV2NAjqPXGG7FGr4irfFPPbX7bLX.pITf0JXAYmxHP5PnlGAFUvM
FASm.z7ZsArlP2CJBZRD.HjyRWH0HT.z8fOLm5NmVYI.ROfbSkRD2jRg.cbE
iBi.zWPaQzbn6kbWmIfXWaMIABBtcvDCbmQyHh1fXi.LGbQLFnUC9FbDB1BX
YTzrGAyPeRAGFQGCAwqLZLxlgorHbIv9biQgfVTHzB.th9j.2RQ2DvLTX7g5
X.JL5KonNnHvWBbk.Te7tfPSt3OPvCBG4AvPToJcuwPA.lK3bCbE55.F9Tj7
.tCBfgjNDaSHbHe.Oqb3j.Xk6d.AlStCw1PCdEDpEbOvaF.jsVD5QAhBh20k
.3uXbSPhSPfC3t.GcC5UBtP.e5vDAHWozMbV7tbJFHa.z0gnERiC2FjTPb.P
WAxBK5wAZGh1g2B.NXpIS4fRPgAFY.Rg.uIPkaDNL.Hfm1g.y4XbaPygwUbl
ATLjBBA.GHwXMnLQy8vvVIk5HbHvpwETAbqwaGiBv.bNtOqAB.AyrN.LkT64
KBW6fV.0mgoKilKczCDDRnbY4HL.ZltrSTnMi+x1xV.QeENhy.AwbXWDkO5F
.u3GRTPAxGOXEDTEANwKClYtg.zPBzbEiCg.YN2AigqbjqDfrPIL2XwfPXVK
PRNNQrl.VWNbOKj8gC2GXdBl9BWognBNbeICM.ABigIL4gGg.LnFEPRrtah.
wyzNHaCDkzos.XVenPPfx84uQfvAJj1UP1QdqSlz.+giPEnaApu.IfyD.zRB
gKaLPBykHM.v5PjoHmREHKOOyYtP+fWL2kuDLbLE2wf..i0k0ByHccNXUBVz
NGYIwJb1P.HBd2FLpgObKPUk5BBkUFiDhe5LO3nMwsNIjk5jKf8s0YCA4Hg4
eAnLfegzIpfb+Xt1AXCJeFRfrRocMDRQyX78E.JhNxP1JFeeAHHXrOTcAPBN
YEDdFybkfNBtHeDFX96hAioV5L1QxS5S.AxL+3AkrxQKnjTMrnRLb8PvELxE
bR5m2DDGXjiJMxyWjpF9DF87pfLj4KRGQQjmKNpLhdTYD4HxHyjSK.nJtWB3
Wj8wTFraMoPC+irRCNRBud6Bm0YaxmsUit0TOpIwMOYcQ5xpkn6W1w4QgZ+1
UpfEJQbAoAZnRhshrKCULb0wN6D2BccDCkcqS5l4oYu2sZk28iIK2rydb65p
1Noe+iOjtXwrrEY40tgZ2AjibI5wD+ccSsKU0teAC5ZEvz+uAiCP4ZlxcDbf
TdSDstvnrczsMTf4KxvaGh3AId4Nx.Qg33QjVZJa2XBSr0ORPJWDg+H3Tzav
vcMaJ.8UtBt5cKCY4SdQ1pr7pkyFBX1ncaJxdLOddZoyNo5ZU5qcKBuemQws
43f0mDg0.EQZ89nMqsJk5OroZWaNqhLd1LXPanPfH7BqShHfbJ7ZFs+b6Ial
jrH4o8atFlJu1oLfbmLF+QPOwXG19FMTngIz4tcFl1f+HHeHUKC78O1noVhf
pczLzNgV6GSHGZWm.IPTusqApdFpzZR1PZZdlkBo05MgfbXohCGbb1et1dW5
RbubRpLqfLlnJOcu01DxxTvoswAg6AUYEcBmnNXP2zMxT47Xf7+MF+QsRz66
Fo1Zenv+o8G46sqhWTMwY8c+API+uWkrL58wKWG89jmRuOaADE+WunNc+XbQ
QnNc02GqeoIHWi8lE2g0loMdAH7e5OVbmqaHC.yHbKgl1sVIB+6cREv72btc
fALODedu4caGcvXtHINuVqoXhYDb0s0ROYC19Z9gMbOsAKTj.W2u8G+6nqem
Z50022u2uWXule9C+kA3tfq7iSQQTRN04tPoLJKvPr3JfQ746XYJgS4CyYGj
+mwcihYX4iIh9Xt.T5s4ZcZ2MXtMfG5M9kgPYskGQrm0owr2kqxJtoYLl8mK
rKHHjJeBHnkkiHsuLcfBOUoWbYfdb+m+52lmm8XxxO3DgWV2H2j0SmM.WIQY
zh1N5zoa1gFtmufga0dDOtsL7EdJ4YCfXGk3Gs6.MZgbNx70ncm6GjQ+9R7x
LqO7nA4tDjGw2mrL4ywWIeguq9ia6Y8HNLoFSkPlTdD8hmCYIo+mq8PW8phv
+93zk+dOnbbyV2FG8vitdj+5ujBPB8FEkVBYr6GWU5l8piv+uVuHcdRdnzcq
4v0u3VswwGOP0IiIz95fbV55ZHe+gj4CQ1pNEaeHvSi67Zvd+XbQd5WmUjO.
zxqOQiuzF+90xjeOC4WDvr+sr4IqeF746T5Oskw4UQ3zMHwy.ScUn3MOce3D
bankGl3xUj7+ozYEWgvPWEVAew.JdUl436mksJoeoNtaWqrb7eGcpau7TXeH
99gXz0E3rWfLOLo866zjzZYYKHcIEkmgLb+P1i3jnGfRlqUBM0GnVvotI6KN
XmYeANap+9ScXiveAnp943Omfuy2WnIvNnYLPlJuvBg4w4e51k3K+zst0Ea.
9jcYynpV4tdrgHGYA7DUXg5pMOtZajMN53BrJ3zy3udwVRuK1JfesdLK9sx2
ELBo1yw9kn6Cd8Q1eaNO4FTPNy7FjAXxtaaeO3fK25OGNO85xX8D6n48KRfz
M7OPCeWV1mtzKE8usJc4mFxiC.HYHlpTb33yXuHr81Lvl1m1r+t3zAD6Cf6C
kLOvib2Vv5ZBu9QgEuMvg9Xdr2z3mWfMJpaz4yPXnWcOPeexOO+eFeA+eMjX
5BLcrtMEoVgBpx9QVguu073bqWHwJJeBBsVtQWdj1bUln3SweUU6KnPO.PMM
mbrtzn9jb8dpYxdQv6vdMewEN68xKzkEMAeKSrMi4iv3zqEoevaC3oI9mymP
rZOmWaen7N7ny.rpM3ST8MsdzyTJSiIj7gdpc2hX+Wyjttv20dN1uZKkk+S3
w2sXSR8WB2t+nhS0kOTX6vps0QnuFLQd1WVNHt3rwYtBbwe5awCiIHLqz+j.
p0bNy6iynP5lWOl36ySRFHW3zBUKGNUgIoe8XfeDP1WVDOHVvHHJkew7UDfA
tw+FBSsxqGe7+jLeP7ftJ0aZ0brIkQduV7v+axhEYeYXpBlz+v0pMTiaNEDI
3kHC447F+PKXtlLJ6emYT2Vs98YKFnYY0xxJgLik9mF45oTbQYhUaxWE9Vhb
vDRDDedqLIQYc9VLiTwLc38KRW8hNHnR.ZzgwiHjWEnk7jYIoeN7m.h1rSqV
nkcL.o96IxkkA7SiFMC6U1ZJA.raKCrpKeKy.uLK+ryG840xccxx4qeMFUdm
B6xhabzWOI7yjj1uE8BEwV9dEpoWE60h3Uc4MJq1BF+CwEYQ+.tJLSt3z35h
jG1rXQQm1v3lRYAElGgaVDUyYDW6v1dcV1+sRwHkT+VkgeyI7u6kJ.RQccTP
dluXvaVdWVpqwR1wLZiOQUdkqMmY4VyUQ1geqFeM99R9EbUX+1Pdrw.ZDUZt
0RgWpqH3mhK2tOe5L13pPSVnCuRlsuUATqk3m9B3OIJe9pTDBmd3aj0d3O+4
z7huE8e9X1n.+T1Ga6fI3Gkz424+.rdWbQQd58aJ7epCp+E3sSenPebQ18wK
16q6YaeGQe6tEW5Y36nNUdg9NpW9ItdT9NperpS.DJkcWwSqF1GxYJuueHmM
9OGKNlyWtI5ccI3HerpeXwlz4SWjttfc+lGFnpdfevpktudqZ1kfOAl6gj7e
O51au0UxIvkec5xr7mhW.HUy6.iyZgwOdgm3gEYwPTiPLn8VxZCtOhLX1FZM
UfeWwP3uAV8M5hPIOY9lYCUhXGQAh+SSDUJtZhf0EwKmGmOe3VFlQTNPKA7t
ZlBCi00iGqqz9MIz+w6ezqAMqxGbomomHeLCu1mpe9EA463bW30ggSTQEXR6
T.ghKoGBawUCigp+5NzSqPdux9HHiSHayoriw59urbistLGnzjHL25niqV4s
Ja3sTRglbJ928+f3eJukHVbmYwn6q5lWwfbUk8zUkau3tp9jwJKmJ8FKtEMs
ZxIyy9lZXxmTHnUNMd42uXpfcQviyShmG8Ol7t+9ZX1guKOadd5iYu68ea4r
28S4YthXw69KK17mx9w328St4+r9ce.qFDYeMh8tOj9TRzGxgYbs3cUhu6JE
p2wH+iICy9wX5mADF8BEd97akb5qJKHicjLg1JFnb4kzFZDhoqICJntg7xNn
tld9n5VwKyn5Z1kOrdq79qgv5Z93DW2RdUEWWKFTf8Kp65Ifk62hPzlZWNtA
4MkUNLh3EK.sZP.zpxu1wuXAn0mGfVq3uLAnMWd.5V48WC.zL43.PqYxWU.z
1AAPeQcWOE.c2WPz1xelLtnyJixWubMuTQmMCaMwD94G7hEc1DvhhIUlWjny
FwkGctUd+0.5rYjPmkbxqIzYiZPnyWT20SgN2y8poMEudbgnEV+R7PuLIP+P
ZgSJfeHEZHR5n7IXKDtteVHZiW.T57qtf6icMl82i9CoKWsovUHu86tUDknD
314G8GVAA0ScOkKkW5BYSwN9bww8buC1TkqSl0GbzLrMADeDT1jdRVCukxx1
SSo3jfqe08LeuRVkp7unYV0UiU22pHXVk2ykJTq7KBps7gXo8j4b8Pypnimy
2uZsTx+GTkVLl5kokiThVvU3M5Xx3fGI.iHhctQRNFijJDdROFijLjQRLViD
8biDaLFI5US5QBvhfMFVDZaH7DYLFI0UajjAH8vE7c3ijH.dROJ5IdHiDarF
oy4OooiwHQtVROU.FDiAVTHfdpQXbBwriORiy4LEFCaNtN.FhMFbDmbsFIl8
pMRgfrxndc4vFoPLv0lwfmBIptdLh0xDWM8TH4OPGCjU1UyJmJC01aviTHRu
8b5xxwuataeKCtrCMsYbypglNrgtWQT7S9Id0J7UEo7lcCALMuey+peXtw8m
oK8+oa9YSxS9b5162UpcmDmOCeQXlUrI2+tR7UkecPm7TFvfK2jVxitWai8p
FkdV8LUgx8dwZJEDs7oQY6K7Q6eXp5S0lrmUZxd9Qop8u9IG+KexQ9pmr8kR
4l2d7WwlludM0s6Zo5Q1tBn2ULxgTsH6UkhruUIxAUgHGb0gLHK78+n+zuO8
N8rbv0up.4nYkWJlBshONXGhcU1w1cHNxam3QeyDGLAseEaLX+zvzT8pBM1y
pyXupLimnpL18u2Vu5b2BtYWV+s5UYwAaQWUMEC1TNrJn3Ppdh8pxI1upl3I
pXhCqZI97YbGXkQ74Nio1ssaoBHNXS7FU5vfMyCrhwzqJaX+ppgGuhF1Cr2t
UIC6at+csxE1WixdUiKB1T9jVrMpPgiksZ8JQX6VrcpTrLVj0tpL3KHhpVED
7rTUf04hQizpWc.CD44XexfGYZh8hhnZTU+ZmlFPU8Jrp3WnUvugT89FK4UU
U5KbY0wpLegTf6FKxd+puWnnHWNBpVk0a7M65Skzar3rZULuKp+TvgaOV0wa
zX3yCgDPkuaznlZOcqsSLctp1MVj19UutQz7XTIyZUltWPYaTupyEfU14qzb
8pJyMVbSU0jKbifPc2eFYp8pRbAOkORngHufYBUu5uEtR47U7smwrfqUU2By
Q9BJd2qhsMFSXn2YEVUg1FLy0dkXKX69PWn49V40FdUWa.qlVWJuMixxOL5q
j1XtEiGT4zFit5jykruUFsiWUzFPEQavqiUfU.sWzFRGYWENRkNaDL4ppnYg
ucYms.V0yJXVWqSV8rxk0mpVV+qXY8tZk08JU1PeHPBnxjc8fseQ8vebXkF6
4KYoCphXcXYlB6yobupZXCluZTygBFL57UDrPqFXcsRfMJLbsJ9UHSXMfp70
nPVMdc.amvtlOQActhc0yp00END+PfpZ5cDlVrdE3JzEc6DUcqAaYcX00J7G
ktPpnViEAVuxY0gGhn.pVViDEVupXE9BnDRkvZjHvFU7ptsDOmndZLRD2dUy
pvC0DRErZjnwZUppfoufpNUiD80rJTEtHLjBxzoKFSiKCvdMx.GT0nB2DIj5
syfIv5UDpi8zp2mp.0.q.TCluZVomB2lIjp6zvIt8qhSADwOvJ2TupZSClgp
Ucld4DA4vJuz34605iYbHUZoAyUUUToi+jbeppnzHL9sTsjBv9Mvp7SupNRi
FSUzqMMJzopOFxifp3QCWdTUYidg79BTuhEE9iAPvUonSTghFZ0IZXUlnyUU
h5lf0+py41AOrOWupTE59ho71+0a++AC4MHC
-----------end_max5_patcher-----------