This is related to a discussion with @weefuzzy on the Slack. (link here, though I guess it will evaporate in time)
So I’ve been playing with this some more, to see if I can get a version working with a smaller amount of dimensions after fluid.pca~
and I was getting dogshit matching again.
When I start poking at the numbers I noticed that I’m getting random negative values after normalization.
One thing is the nans
and numbers like 2.404e+303-7.6205e-227-2.2587e-82
(a literal entry), but I would assume/presume that fluid.normalize~
would bound everything between 0.0 and 1.0 no matter what.
----------begin_max5_patcher----------
6924.3oc2ck0jihjj94p9UfkOmop39XeY2tmYmdLa6Zm11pFqs05oszHkHyh
tUJjgP0wN1z+1W2i.gPRHHjDPdTOjhBHhvO+bOBfv+mu8MWcW1WSVcUz+Vzu
D8l27Oe6adi6T3IdS4++MW8X7WmNOdk61tZZ1iOlrn3pq8WqH4qEtyKuaRzh
jGhKR+bRzmimuNYUT5hn3nEY4OFOO8+KYVzr3h3UIE+6aZ77zEISyVuv0Crx
Sde1hhUvs6NGYBo7zKV+X15h4IENxfT6lWD+n6lu5ulL+yIEoSiup1UuOdp6
pzs8S5hMcylSlNy0AY28a2HDaZ8x3hoeJcwC2lmLsvKhDZJPPQJg6Glvh+HT
SHQ+J1l+0aeK9mquPQIaxUsxzcxB7VXAIigDM0Pb+33.TL2qb.8B4.toMk.y
zebvcqKJxVzL0tgv7mp3aKS7DvU2Eu3gqh90JRLGr.KRxuMYQ7cySNEFkoZi
QsBGGpMdqsM+8rXzuD+4j6AWw+nYdUcLd894YwfBt0Clmtx86VYxcqu+9j7J
Oyat4lh73EqRAikIaADtpIoj7PoDMDeRqytlIUdOzd1hVNIB05QIoEeJIOJ6
9H32njuF+3x4qhtOO6wnUEIKYOmg1nrVDiZM2YrQ3d+Iwf.swmDceZgyV.MF
AgXbQzpOkV7bVtwaCOkRjdCOtGUZfhIHlDM8SIS+8nuksNeSfzUQw4IQOjkM
6Ys3qMyNQo4lOnjkLPATi.npYktqIQKyRW7r1hi0Z7OuIFk4+QnGDYFsTlUZ
pc0yDAitUWQunfTStvTuLSLf1lEfV3cWnhdHwfEIeAFvCz+KiAvlJfZmGCHf
olaKdbYzNwyWUDuXVb9r8hnGh7ZqrZG4AuAPDR.xCqKS.tO1Elm6KxTBssZh
SnSjWCQqGRUezTv0DTsq5G0IqAlj1M.GiZ1jJ2FsY81jjWxYkrF.njNO4yI4
qRAs2Vx7MWEubYsS+lZMAkG+VlqiLWWcpzE9SQqNUdxmS2zdY0YiyAJu.H60
4dHtup1jnJ1MYyfLfWm55I+IAMSII4zAHz3pkkHfNU0lKWa5ZdPduIMURbhD
iVsUZ.J4GlmM82SlUyJCTNKSVjtXYdxJPQByJ2S7UWdVx8wqmWbac7bJaRiW
eCHciWrBe+6xSimWwAOjmNKaARD6nJvSuY3.qYomqpyLt6XQ7xFZLX3.xkib
Q.EpX8p6hyQMUoKGayEKxxlu6kpZ27j6KJu7xzEK1SJVjs73WLO8gO0RauKC
t3is02tqr510K7W8Vvnn31UvD0189hmOuzSc2t+qwKReLt.Bp9XY73pK5gc9
zpo4YymuC+5uxma3Jy.i7oIeIcVwmbCTciA31SWtwH5pJs7rzGRVUr64JheX
0tmYUw27B8ZmZ8ckNw2Vj.4jAbwt2.3d.Spb0mx9xpxabigVcAv1ktptSccX
ucN+dveNDpJG1iAyE.d+gPdjZWnNrW8QqwrgcIsH493Xa96NiylD1pKtbCyh
YINtls4btnAk3NmoHB.nVE+PR8woJLwMTxDohYUbmKrUo3rHHa+IZpQIkQpI
FMgJTQ7IvbzY7H8DtfP4lnaTSTJshZvFZj9FRUPuAHcSfovyEvIXlIVijwkf
oHzGJFmJEQvHo4bi.ZvDt1RTZrSzBtENmdByRzvPIlvsJJbMno.rlwZfSdCY
hVSXJFzaTsAZQzMPK3bJUhmhpTVELtSHRARuTncRNdJ4DovPLLr6HSDvfRov
kEZCyJvV.+vsLWKLRCEINCGxGgEwln3Zpf56DgVYfSYEZtgCckxxAAGzNqUP
DZrqJuFHF4H4vmnYLhjiRQAgS3NVh.7tPyPVRJrZgE3XfQjVTPt4hBPfRbiG
nEjL7.PLXUnrE3ViAHT0DPe.xbkvnfqyMTM0hWWxrbICD2vnJURbjDLBnZQB
QgBNTBxDvnXkBNE6E3FAt.tAqlvMPaDns.P0QU2Mj8BmxYH6vIJFSg2j.HCA
HfENcjPaAI.NLTlhpQAmVyDVJbJvvxvcRbIDKzZw6xHXfh9FCnxQAo.3TK1O
LfpTXi.coFt1M7ILCGUXfklTRQiCv7BT..iSHZkVhcrQHgjrvwBU2L3FsdSA
sVRcRNTVpQSLB7KdSVlDT6d4LnzvQhB8h.uIrcnIOHczP9ynPFXEFZi.pVJG
j2vXIgKg17f3gPsBzhPw.yQJJdf+Cz.FUf8BXJQXZTUI33Av0A8ObNzRSPAc
AZgZzVPeSm.NYDC1sBKyBV4vMiRezkBbRUPWBRRPLiR9pqA5OiiytAsjrTmA
JZFfpTvQTBl+nljJ3bQIQA8ta7.1P5XMBShZWPlCbK0I.LJPSgMz.9ufcILh
JjZAeBiw0ODfC3nfTxA0gEU8BBdMTXyAOPTXqHfsBRQflw0uRoFLPbdJRKm4
LDA+bbj3Bs.UHvXhl6nPB714L+nIYnABPXfRPHw6BQd3Xmy.KMqzeWVBQ55K
gxAOPACWmWEG3VsSJYTLD7Bb3LDsSyZ0V2YPbIjjfIqYMNQjjAnfX+nsFsyf
fIEL1NwF1cQIzzyKHUKAnXMGfh1Q.JI0udM9oeHc4uwUhpoZMBgcbvabvlOx
BZ.AwgwywfAnlPAVqfEjcBi.oCgZdDXTA2XDLcBPyq0FvZBcOnHnIQ.fPNKc
gTiPAP2C9vbp6bZkk.H8.xMUJQbSJLCSKWwnvH.8EzVDMG5dI20YBH10FSRf
ffaGLw.2YzLhnMH1H.yAWDiAZ0fuAGgfs.VFEM6QvLzmTvgQzwPP7JiFirYX
JKBWBrO2XTHnEEBs.fqnOIvsTzMALCEFenNFfBi9RJpCJB7k.WI.0GuKHzjK
9CD7fvQd.LDUpR2aLT.f4BN2.WgtNfgOEIOf6f.XHoCw1DBGxGvyJGNI.V4t
GPf4j6PrMzfWAgZA2C7lA.YqEgdTfnf3ccI.9KF2Dj3DD3.tKvQ2fdkfKDvm
NLQ.xUJcCmEuKmhAxF.ccHZgz3vsAIEDG.zUfrvhdbf1gnc3s.fClZxDNnDT
XfQFfTHvaBT4FgCC.B3ocHvbNF2FzbXbEmY.ECofP.vARLVCJSzbOLrURoNB
GBrZbAU.2Z71wn.L.mi6yZf.PvLqC.SI0d9hv0NnEP8YX5xn4RG8.AgDJWVN
BCfloK6DEZy3ursrEPzWgi3LPPLG1EQ4itAvK9gDETf7wCVAAUQfS7xfYlaH
.Mj.MWw3PHPlycvX3JG4JAHKTByMVLHDl0BjjiSDqIf0kC2yBYe3v8Almfou
vUZHpfC2WxPCPfvXXBSd3QH.CpQAjDq6lHP7LsCx1.QIcZK.l0GJDDnbe9aD
HbfBocEjcj25jIMv+wQnBzs.0WfDvYB.ZIgvkMFHg4RjF.XcHxTjSoBjkmm4
LWnevKl6xWBFNlh6XP.fw5xZgYjtNGrJAKZmirjXENaH.DAuaCF0vGtEnpRc
AgxJiQBwOclGbzl3FmDxRcxEv915rgfbjv7u.TFvuP5DUPteLW6.rAkOCIPV
oztFBonYL99B.EQGYHaEiuu.DDL1Gpt.HAmrBBOiYtRPGAWjOBCL+cwfwTKc
F6H4I8If.Yle7fRV4XETRp5HpDSq7KXjK3jzOuIHNPOGUZ7muHsKN2yqBxkL
eQZOJh778wkQjiI.nGQ.X5P.PUbuDv+T35SYv10jBM7OxJM3HI75MKbVksNe
5FafM1xQ6RbyRVUjtnZI59ksbdTn1umJUvBkHFPZfFpjXiHaXnhKWcr0NwsP
WGwPY65jtdVZ1GbqV4suOYw5s1iaVW0lI86d39z4ymlMOKu1MT6NfbjKwatx
eWWW6RUs6WvftVAL8+qw3.TtlobGAGHkWGQqKLJaGcSCEX9hL71gHdPhWtiL
PTHNdDoglx1NlvDa8iDjxEQ3OBNE8ZLb2tME.KKWAW81kgzqeyyVlkWsb1P.
ycZ25hrGximkV5rSptVk9Z6hv6eNM3i43f0mDg0.EQZ89nIqsJk5Ott54Z1o
hbUxb.9B3fczIZHmEqSmPgb77xSHgNp3.wiapPt1da5B7AajTIigzGnNYLqR
QAobI3GJiAyocFdKQP0VrAPpqBs1cDj+l1oig7Ap215q6O3e72VlrH5CwKVE
8gjGSuKa9rq1anB2xsR60hw6IXHsq4qoxn0.4caL9iZT9ru4qBx0yc+J7eZ+
Q9daTrdqINimNEtgcjIbTe6DDhMzI5NimidPnvZsSngIz6DHLLsQ+QP9vpFZ
HX0939iq1.xBu.k.yrzeDPBLVY6GTmt2GWTDpSW8myE9XT2i4p+Xt9EDCbPI
7e56Jt00Mjyj7YghHPtt1e5DBv6D0zQzFjW0P.7O6uWcN8mTSGeu9vwj1UXZ
kXB.dbcALCdm4AHU4MAWLOINuVqodqIKDhP5GaPzn4ig69O+w+xY5tXZ2vGl
CAHGt1Ocek0VdDw1oc+e8ayxydHYwGcVx+59SUwOg45lwX9VtX6TFUp7P1nk
kKTs84oCT3AWd1kyW69O3hA5nIhRxodC.Puv5JpIESZ1mWD5z3zc5MoOGPTS
b0TI9bmsLkvIfjVJfrLFtQtIqmN87bkrCQfGC2p8XqbaIvDdJIuS+ueHYQxm
iCwyqC54hmZE8zYlKxaYeAXYd+GdzE4mErqjnL7QSG0dFnc0vwvW36q+F+0o
GwgQCMUZNR4QiFo+mq8RW8hhv+g3zE+wYP43CacCn6gGMdj+pujB3Lgx.G3x
PKwg19mQktYu3H7+qUySmkjeYKxxo.SsWPpVCfzg7oq7AdNfA9iUu71mANxw
jKMwspCZvXvduOtHO8qSKxm2Sb4nPz3qP9eD9BDeZvjuDrJ+uylkrpeRU8by
X5Yrv4zfD6.NaTn30Od2kggeXhKiH4+SoSKNMY9yVameB+v.JdQl43GllsL4
bQEO+IpTsVfVN9uw116iw2cVN5mBC2j0ZmHkiBym70h6NoIo0vbTujL3FElL
6Abl4CxTh5PIy0Jgl5akfScK8fn7Q5NFr9e+wS3Ag+LPU8y6sYJL.SGgLQdb
vnm1o.OKN+2uYA9wOciaw1BUHTsXgmwyW4HKqmnBSRW8.uqdz2Fmnb.VTcZG
9MC1B8MXKndvKzWmO6nA0x62J+VvHjZun5CQ2yN24bHa8wjd27DHFl+ck36y
x98PV45sOkuCNX3VE6VdlOjWIF26+jM6loGXS6zE+9kENA+1GHlprb33qYun
6m9xI.Be.BdfC4wrrudm+N.OVlSiNeBf2eBdqABSkcNsowk6Kvg6.uwsOkUW
S30OZ3iz76944+y3G3+KgDSmioicZSQZ+0KjXEkuAXVK2nKORaBbhhpp7tjU
flabfFd9+w3uppsCJDbpnm+ysdOU794q2fmmY2YQqKQGFGgyde7BmxJHfekI
1ciFhgLFM85AeMfCitsWmYfo5Ux5vi5H9g1fuQ0W23QOQYP0mui0G5od5VD6
+YlbpK7cs2i8QatK9sviue95j5eksm7pXwo5xWVss.t1QClsjIxy9xhKhKdZ
CV34h+z2huLlfvrR+aukVy4LuONiBItLdLwOjmjbgbgSKTsl1TENgfwiAdOf
runH9hXAifnT9UjWQ.F3Z+WHL0JGO93+IY1EwC5pYXPql8IoLx6XwC+uIymm
8kvYiCeqzw8JASm4Awj921RsgZbSuBZmTHGcFk8ZlQcOp0eHa9EZVVsJeRHu
Uo+kjsdJECJSrbc9x4Wdhe5pumAAUB3aNfZDlS14pivIBhO4WljnrNGTlQpX
ix6padxzjzOG9a.QS1fUKpyVdmT+qDXXY.+znQyvybZocZ.dz0rP.wDrkwj0
keQafymcThNuJYwrUuDiJuUgMr3FG8iSA2ljz9mytPQrkeHhZ5nXuVDu7ThI
Tas8+w3hrneDWElqFbZbUQx8qmOu3jdfw6+QuXjRp+AlgacD9uZTEfLn5RAI
nvTPbS.oZ5l3Z7MNe8BaX9Kh2YFswmuHuxCiyrbq4R48m0qQVAtWM9R76k7K
3pv9syiz4p8H8le1IDTw5VpEdo9jf6TWtm0Yve+0mvGj2dnG+4z7huE8e9PV
HOQPp0R7SxAbWEkuEVJBgSK+JxtbkQYeroCtB2TRmcqeCX813hh7z6VW32pC
puC7dRaTnOLO6t346s6d1z9H5a2t3Ruv1DukArMt2KU2icWhz5aVZVAticOX
ajyTdqrno1Fxsu.Sb1aK2GYyp994qSmMAq.Ir6Vee+vmMoJCYCqV518V0rgf
O8UTk+Hp6RoRMFm0YUcYWi8NkBssKrCHnt8CPbuImaXvzMzZp.2XwP7Okczj
J4IyVOcrDI1PjHBkeitVLZxft2T96aAgIDAgeG5hpGMigwg20Av6Jke2N2Wj
JNad+XH8KySOF21Gv7svfLCu110OePP+Zg6BttJzFKHsXUUfKoGhbwUWFCU+
SdHTyvCs.ujzPZs7EYsSXGi086tb8stLGX2jHLC8nVTq71jM6Vrw5p1gHBg+
AjoCCZwclE8tupa1ICkqZa4bx31A2U0mPVYYCJDvXdqIhWuNyENfbakUOsxo
wK2CioB1ffGmmDOK5eb0696qfYH9t7rY4oOj8tO7sESe2Okm4JjEu6uLe8eJ
68wu6mbyAZ069HVQHx9ZD6ceL8wjnOlCy5Z96pDe2VJTukQ9GWMX1OFSGkXI
T34ywUxouZsfL1.DCTtbHsgF1X5ZR2A0Mjm2A00ztipaEuJipqYADVqQd+UR
XccH40XIuVhqqEcGXePcWaAVtyEhXHPn0xtCxaJqdXWXIg6IBfV0M.spbGO9
YK.sta.Zsh+pDf1D.9Ti79qD.ZlLDA.S9ZAf11M.8f5t1F.cqqI5fj+LoazY
kwutnFyKPzYS.qIlvO+fmsnyl.VTLox7ZDc1DxpB0Hu+JAc1DB5rjSdkfNaT
ciNOntqsgN28SqYPfn0cCQK70TYFULbF82mVTUno2qjSO7qMbax.q+ox2SO0
piY1uWQ1tov1m1js5AuEgp0U+h4W9O+SzhS0itbotCyIjnSOHY3skkm0+NNv
MBONxvHX1we4Yg4BsMuHC2IMTkqMAgLbnqUr5ebh.G36OxYhhJZyf.hXNACY
p7OrAK+kbkoWz1DZsJRMLggovz+LHbQaI8a8OZeIaPCWbbu+mNPQQayivvbS
VP3+gSGP++kSi+in+CfZmk9XBv6YKVEwHiGV.sUr.ucgv3+nw0pWzXAsM8dS
YwXS+pFKfEfQOu7ADN1XAm5zK5iDiZc1D9LhXkycVMfuJn0X1QLK.VaOLJc4
yG1G9mRZl6ci0t0ZPuvX+ZZWoH4fZYmXmx52wJjc1sExtCD6gNRb6XMRtNg0
wHIn8vHYLAvSl9fmv4c2IOgKOykORpP3IceLRxPFIQeMRztFIVeLRzQS5QBv
hf0GVD5P7bcjyEORpQajjAH8v2VfKejDAvS5dQOwCYjX80H0k+jtOPX0jwR5
oBInQOLNg.5o5gwQDTTv9.IRDRTPZuLR5.r6X8Q7VQHHQhdYjnAvSBUeMRii
dJDuVQefDEB3JumFmNM75irj0AvPr9fi3jwZjXg3KwJcCtrQJDvUsoO3oPxn
T2G9RNUPm440G1dL1X405Fotjd79.ckEDlWejoBMjnf79H2UpdrhMQkg54dw
iDMTo2Vylrbrppr4aPeXGZJu4gldYC8YkKneQehWtD2HAJuY2Pb0iw+l+S92
bs6+ltv+ecK9zU4IeNcy8KcmINeJtMILsXct+Ko+qJ+q3xUOlAL3h0ok7n6i
5+J2NAvdKzT0Gg+2sdVZ1GJhKVu512WUZF1aaWnTPzvFm4lsCfl2cl2eOqTP
o98ZabC+0u6UtoXpVsYHr2tqYs8uwpcuZAtCYx2c+I+L2Yladuw736KlGYOw
byVVv0u83a.C6t4KT2tqRY7iqmF2lBn4MzBMin7aFETkl4kKFBgt6du7w2KK
XU6SsaKnBrC2VvOrHhKnZ+l1iUJJ20kDLquJwKUUsauM.i+1xjx8E+Oj7X5c
39EUsgnaKr82RVOuMF0yrzgumYVfaCH8lUVoXpoMKzfJcy6sc+pkTd49.M2T
tiPKoD0dMpo82FsA3Wu.iPMF+QvPypWWRtXGh2GWTzlCww26ZZdeq4hIne56
Jt00LxIPVrP7BO1VV7gtca1g6N7H5d7e8BRQNV9Xew5nEbyFdOsv74u5zpkJ
aZzd6M9k623V.dU5GSf8079zE6m+3e4DLkMG2vjp3kaWwTsPYskGQrsZW9W+
1r7rGRV7QmU2uV+IqcvtgDCyavuI4wnRkGtCsFXk6FRO0F2gAB+jmqxwsskD
sxWMvTRteCMkBxZVaQQ1V8FjUUnJ8lz55HJhPQoDeNcVlRTtKBRM6rCycwl3
kkxqvMys8IfcXkI9Np28mXst+bSU+Tqs8mqk7YUgVC19uSy7.qThmQ8quurU
qWm5a1h8jJTm8EYssFz+LhnpUe46jpBrf50ajV8ZGeyDWvkc8dllXOqHpcp4
6mxjeC0UNvZ7dX028yuX+1WxqpZ3dn9gMwqgWy16Kxd+Zy9YQ88JAUqtqerE
85bp+pO8VH0pm5mZJOmSz4mALb2PHATWz6Mpo128X33YsVyy6KRa+Zadyj2S
t9rdcK+YT1F0qI4AgXbdIa1QMHuu3lpZMd.NLgxHmcsEu2Xp8pg3Aliy4mUP
uR701ty6izYaQozUs.uuXoZ076vbjGPw6d0y69JUyZ0Dvmhoazbc5tYl6bqM
2Wdc49BVXtSoPs1KKJQuunbctnDAUusuXKkCpq18QWwNk7LkG8QTbzZl8ETu
ru3UBKv5i8KAityqNX2ClbU065SAts6xI7YVeqOmZa8oWWquz2Vh.plxiGz3
H7T05VEbp2+4UipO25S8E6lbXcn9oKYoCpwzgs1HgUWoO+5kyEyW6TQZ6H8n
y648b7ZE84Tmn6EFtV8fNjY4EPMftWHqc9RW6OcwEmgYn0y4yrVNOvQ7uj2S
sc8NBSKVu9LG5ht0RMY9hsrNr1KG7r+CpdK2WDX85pbvT33.RdXMSN7EPIj5
jbOQf6TOjOsk3okpsXOQb6UqiCl7Bp9F2SzXs5XbvzWP0t3dh91sFEG5aZ2N
kq2yrT81uL.6kHCbPMENbSjPpivWLAVudAehIODXMB9rpOvWLesac.NbbiPp
8uWNwseM9MnoEDXAh8LpouWLCUq1897IBxg0k29y2qwWN0PpCuWLWUUucONN
Xa0X2dX7anV5Fj8af0O2yn141aL0IySAVWbOqZh6S3762V2ael78BTud1FBI
UuF1dY0u1Ks101ccq8RpYsmlf0+oy4dBdHEsZYodxs4Q81+0a++QuiFoF
-----------end_max5_patcher-----------
You need to load this dataset:
transient_dataset_20.zip (15.2 KB)